Synthetic Data for Healthcare

Finally there is a way to reconcile Big Data innovation with data protection!

Healthcare providers have a long history of handling sensitive customer data and undertake tremendous efforts to keep it safe and secure. But at the same time, these internal safety guidelines and existing data protection regulations severely limit a healthcare organization's ability to utilize these data-assets. This makes it increasingly difficult to establish a modern data-driven culture and to develop next-generation digital healthcare products and services. But what if there was a possibility to reconcile data protection with Big Data innovation?

Classic Anonymization Fails for Big Data

Truly anonymous data is exempt from data protection regulations and thus free to use. But in the era of Big Data, classic anonymization does not protect against de-anonymization anymore. It has been demonstrated, that 80% of credit card owners could by re-identified by only 3 transactions, even when just the merchant and the date of the transaction were revealed. This re-identification risk is fully understood within the privacy community but is commonly underestimated by decision makers, who thereby put their companies at financial, regulatory and reputational risk.
As even the most sophisticated anonymization methods on the market fall short in the presence of Big Data, a fundamentally new approach is needed!

Synthetic Data for Big Data Anonymization

AI-generated Synthetic Data is a game changer for Big Data anonymization, which allows to retain nearly all of the valuable information in a dataset, while at the same time protecting the privacy of every individual. This is made possible by leveraging state-of-undefinedthe-art generative deep neural networks that can automatically capture the structure and variation of an existing customer dataset. Then, after they were trained, they can be used to generate an unlimited number of highly realistic & representative synthetic customers that match the patterns and behaviors of your actual customers at an unprecedented level.
Synthetic Data is as-good-as-real but yet completely anonymous, allowing you to transform your privacy-sensitive big data assets into data that is free to use, free to share and free to monetize.

How The Synthetic Data Engine Works

Our Synthetic Data Engine is flexible, easy to use, scales to millions of protected customers and is certified with the European ePrivacy Seal. Since we know that your customers' data is one of your most sensitive assets and that keeping it safe & secure is of utmost importance to you, our software is deployed within your secure environment - either on-premise or in your private cloud. Thereby, we make sure that your privacy-sensitive data never has to leave your organizational boundaries.

The synthetization process consists of two basic steps:
1. Training phase: The engine analyzes the existing data and automatically learns all the structures, correlations and time-dependencies within your customers' behavior.
2. Generation Phase: After the training is completed, you are able to generate an unlimited number of synthetic customers, which almost exactly match the patterns and behaviors of your original customers. An additional benefit is, that this step does not require the availability of the original data anymore, and thus can be executed in any environment at any later stage.
Request A DEMO

Top 4 Use Cases for Healthcare

Mostly AI's Synthetic Data achieves unparalleled accuracy, retains an unprecedented level of detail and is yet fully anonymous. Thereby, it opens up a whole range of opportunities for your otherwise locked up customer data.

AI Training & Analytics

Advanced analytics, machine learning and artificial intelligence require broad data access, and new emerging tools & infra. Provide data at scale and with peace of mind in non-prod environments to your data scientists and AI engineers alike.

Open Big Data & Innovation

Data is the new oil. So, fuel your innovation by broadly sharing granular level data with researchers, startups and innovators alike, increasing the chances for disrupting healthcare breakthroughs.

Customer Centricity

Restricting data access to a handful of engineers prohibits broader customer understanding. Establish a modern data-driven culture by openly sharing representative data at all levels to boost customer-centricity.

Testing & Development

Accelerate the development, testing and integration of your next-generation, data-driven healthcare products and services by providing as-good-as-real data to your developers and testers.

Contact us to learn more
Or, Discover more Use Cases

Contact Us To Learn More

and we are happy to get in touch